US6153414A - Method for racemic biochemical resolution of CIS-and trans-pyprolopiperidine - Google Patents

Method for racemic biochemical resolution of CIS-and trans-pyprolopiperidine Download PDF

Info

Publication number
US6153414A
US6153414A US09/485,083 US48508300A US6153414A US 6153414 A US6153414 A US 6153414A US 48508300 A US48508300 A US 48508300A US 6153414 A US6153414 A US 6153414A
Authority
US
United States
Prior art keywords
pyrrolopiperidine
acyl
mixture
diacyl
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/485,083
Inventor
Claus Dreisbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Assigned to BAYER AKTIENGELLSCAHFT KONZERNBEREICH RP reassignment BAYER AKTIENGELLSCAHFT KONZERNBEREICH RP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DREISBACH, CLAUS
Application granted granted Critical
Publication of US6153414A publication Critical patent/US6153414A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/007Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines

Abstract

Cis- and trans-pyrrolopiperidines are advantageously separated into their optical isomers when monoacylating by enzymatic process a mixture containing (R,R)- and (S,S)-pyrrolopiperidine or (S,R)- and (R,S)-pyrrolopiperidine, thereby obtaining a mixture (I) containing (R,R)- and (S,S)-6-acyl-pyrrolopiperidine or (S,R)- and (R,S)-6-acyl-pyrrolopiperidine. Said mixture (I) is then again acylated by enzymatic process, thereby obtaining a mixture (II) containing (S,S)-1,6-diacyl- and (R,R)-6-acyl-pyrrolipiperidine or (S,R)-1,6-diacyl- and (R,S)-6-acyl-pyrrolopiperidine; the enzyme and optionally the solvent and the excess acylating agent are separated from the mixture (II), and the rest is treated with aqueous acid, and the (S,S)-1,6-diacyl-pyrrolopiperidine or the (S,R)-1,6-diacyl-pyrrolopiperidine is separated by extraction and the extraction residue is alkalinized, and the (R,R)-6-acyl-pyrrolopiperidine or the (R,S)-6-acyl-pyrrolopiperidine is separated by extraction. From these acylated isomer-free derivatives, the free base can optionally be prepared according to the usual methods for separating acylated groups.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a method for the racemate resolution of both cis- and trans-pyrrolopiperidine, in which a mixture of acyl derivatives of the cis- or trans-pyrrolopiperidine is prepared in the presence of enzymes, and this mixture, following treatment with acids and base, is separated off and by extraction.
Enantiomerically pure pyrrolopiperidines are important intermediates for the preparation of quinolone and naphthyridine derivatives having antibacterial effectiveness (see EP-A 550 903). This EP-A also describes a process for the preparation of enantiomerically pure cis-pyrrolopiperidines in which the racemate resolution is carried out by means of crystallization on 6-benzyl derivatives of the pyrrolopiperidine. A disadvantage in this connection is the complex crystallization of the enantiomers with enantiomeric auxiliary reagents, the two enantiomers each being crystallized using one ancillary reagent.
In a known process for the preparation of other enantiomerically pure secondary amines, hydrolases are used and the acylation must be carried on using esters in which, in the acid moiety, an electron-rich heteroatom (e.g. fluorine) is present in the vicinity of the carbonyl function (see DE-A 43 32 738). Fluoroacetic acid and its esters are more difficult to obtain than unsubstituted aliphatic carboxylic acids and esters thereof.
In a known process for the racemate resolution of primary arnines, the latter are treated with lipase from Candida antarctica and ethyl acetate, with selective acylation of the (R)-isomer (Chimia 48, 570 (1994)). However, this process is limited to the racemate resolution of primary amines.
We have now found a method for the racemate resolution of cis- and trans-pyrrolopiperidine, which is characterized in that a mixture, which comprises (R,R)- and (S,S)-pyrrolopiperidine or (S,R)- and (R,S)-pyrrolopiperidine, is enzymatically monoacylated to give a mixture (I) which comprises (R,R)- and (S,S)-6-acyl-pyrrolopiperidine or (S,R)- and (R,S)-6-acyl-pyrrolopiperidine, this mixture (I) is enzymatically further acylated to give a mixture (II) which comprises (S,S)-1,6-diacyl- and (R,R)-6-acyl-pyrrolipiperidine or (S,R)-1,6-diacyl- and (R,S)-6-acyl-pyrrolopiperidine, the enzyme and optionally solvent and excess acylating agent are separated off from the mixture (II), and the remainder is treated with aqueous acid, and (S,S)-1,6-diacyl-pyrrolopiperidine or (S,R)-1,6-diacyl-pyrrolopiperidine is separated off by extraction, and the extraction residue is rendered alkaline, and (R,R)-6-acyl-pyrrolopiperidine or (R,S)-6-acyl-pyrrolopiperidine is separated off by extraction.
DESCRIPTION OF THE INVENTION
The process according to the invention can be simplified by the following equation and illustrated using the racemate resolution of cis-pyrrolopiperidine as an example: ##STR1##
If, instead of cis-pyrrolopiperidine, trans-pyrrolopiperidine is used as starting material, then the method according to the invention proceeds analogously, giving, in the last stage, the (S,R)-diacyl compound and the (R,S)-monoacyl compound.
Generally, the two acylating reactions are carried out as a one-pot reaction and the mixture (I) is not isolated. For this procedure, it is possible to use, for example, from 1 to 35 mol of an acylating agent of the formula (I) per mole of cis- or trans-pyrrolopiperidine. This amount is preferably from 2 to 30 mol.
Suitable reaction temperatures are, for example, those in the range from 10 to 90° C., preferably from 30 to 60° C.
The reaction time for the preparation of the mixture (II) can, for example, be in the range from 200 to 450 hours, preferably from 250 to 350 hours.
Enzymes which can be used are, for example, hydrolases, such as proteases, esterases or lipases. Preference is given to lipases from Pseudomonas or Candida. Particular preference is given to the lipase from Candida antarctica.
The enzymes can be used in native or immobilized form. Immobilization can be carried out, for example, by microencapsulation or by combination with an organic or inorganic carrier material. Suitable carrier materials are, for example, kieselguhr, ion exchangers, zeolites, polysaccharides, polyamides and polystyrene resins, in particular Celite® and Lewatit®. A suitable enzyme is, for example, lipase from Candida antarctica in the form of the commercially available product Novozym® 435 (manufacturer Novo Nordisk).
The amount of enzyme can be varied within wide limits. For example, it is possible to use from 5 to 700% by weight of immobilized enzyme, based on cis- or trans-pyrrolopiperidine used, or a corresponding amount of native enzyme. This amount is preferably from 10 to 600% by weight of immobilized enzyme or the corresponding amount of native enzyme.
Suitable acylating agents are, for example, those of the formula (I) ##STR2## in which
R1 and R2 independently of one another are hydrogen or C1 -C12 -alkyl. The alkyl groups can be straight-chain or branched. Preferably, R1 is hydrogen or C1 -C4 -alkyl and R2 is C1 -C6 -alkyl. Particular preference is given to using ethyl acetate.
Suitable diluents which are optionally used for the acylating reaction are a wide variety of organic solvents, for example ethers, such as diethyl ether or methyl tert-butyl ether (=MTBE), hydrocarbons, such as toluene, and halogenated hydrocarbons, such as methylene chloride. It is also possible to work without the addition of a particular diluent. It is then expedient to use an excess of the acylating agent of the formula (I).
This method gives a mixture (II), which comprises (S,S)-1,6-diacyl- and (R,R)-6-acyl-pyrrolopiperidine or (S,R)-1,6-diacyl- and (R,S)-6-acyl-pyrrolopiperidine. According to the invention, this mixture is worked up by firstly separating off the enzyme, for example by filtration. The enzyme which has been separated off and optionally washed can be used again in the acylation of cis- or trans-pyrrolopiperidine or for other purposes.
Diluent which may be present and excess acylating agent which may be present can be removed by evaporation, if necessary under reduced pressure.
The reaction mixture which remains following removal of the enzyme and optionally of the diluent and excess acylating agent is then treated with aqueous acid. Suitable acids for this purpose are, for example, 2 to 50% strength by weight aqueous sulphuric, hydrochloric, phosphoric or acetic acid. The amount of aqueous acid can, for example, be measured such that the pH following the addition of acid is 4 or less, preferably 2 or less.
The treatment with aqueous acid can be carried out, for example, at temperatures from 0 to 90° C., preferably from 10 to 50° C.
For the extraction of the mixture present following treatment with the aqueous acid, it is possible to use inert organic solvents which are immiscible or only slightly miscible with water. Examples are chlorinated hydrocarbons, aromatic hydrocarbons and ethers.
Preference is given to toluene, MTBE, diethyl ether, methylene chloride and chloroform. The extraction can be carried out, for example, at from 10 to 50° C.
The extract then comprises the prepared (S,S)-1,6-diacyl-pyrrolopiperidine or (S,R)-1,6-diacyl-pyrrolopiperidine. By removing the extractant, e.g. by evaporation, if necessary at reduced pressure, it is possible to isolate it.
The extraction residue is then rendered alkaline. For this purpose, it is possible to use, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, calcium hydroxide or ammonia as such or in aqueous solution or suspension. Preference is given to 20 to 50% strength by weight aqueous sodium and potassium hydroxide solution. The amount of alkaline-rendering agent can be measured, for example, such that after its addition the pH is 7.5 or more, preferably 9 or more.
The alkaline mixture then present is likewise extracted. Suitable organic solvents and temperatures for this purpose are those described above. The extract then comprises the prepared (R,R)-6-acyl-pyrrolopiperidine or (R,S)-6-acyl-pyrrolopiperidine. By removing the extractant, e.g. by evaporation, if necessary at reduced pressure, it is possible to isolate it.
In this way it is possible to separate cis- or trans-pyrrolopiperidine into its optical antipodes and to obtain the (S,S)- or (S,R)-isomer in the form of the 1,6-diacyl derivative and the (R,R)- or (R,S)-isomer in the form of the 6-acyl derivative. From these acyl derivatives it is possible, if desired, to obtain the respective pyrrolopiperidine in free form by cleaving off the acyl group(s) by methods known per se (see e.g. Houben-Weyl, Methoden der organischen Chemie [Methods in Organic Chemistry], 4th edition, page 432).
Using the racemate resolution according to the invention, the optical antipodes are generally obtained in optical yields of at least 90% ee and in chemical yields of at least 25%. The optical yields are frequently greater than 95% ee and the chemical yields greater than 35%.
The racemate resolution according to the invention has the additional advantages that it produces both enantiomers in one step and can be carried out using acylating agents which are obtainable at favourable cost.
The present invention further relates to mixtures which comprise (R,R)- and (S,S)-6-acyl-pyrrolopiperidines (such mixtures are also referred to above as mixture (I)). The acyl groups can, for example, be those which have a C1 -C12 -alkyl radical. It is preferably a C1 -C4 -alkyl radical, in particular a methyl radical. Preferred mixtures are those which comprise (R,R)- and (S,S)-6-acetylpyrrolopiperidine.
Mixtures (I) according to the invention can, in principle, be prepared as described above for the preparation of the mixtures (II), but with the difference that a shorter reaction time is observed for the acylation reaction. The reaction time for the preparation of mixtures (I) can, for example, be from 10 minutes to 20 hours, preferably from 0.5 to 10 hours.
The present invention also relates to (S,S)-1,6-diacyl-pyrrolopiperidines as such. The acyl groups can, for example, be those which have a C1 -C12 -alkyl radical. It is preferably a C1 -C4 -alkyl radical, in particular a methyl radical. A preferred diacyl-pyrrolopiperidine of this type is (S,S)-1,6-diacetyl-pyrrolopiperidine.
The invention is further described in the following illustrative examples in which all parts and percentages are by weight unless otherwise indicated.
The present invention relates finally also to (R,R)-6-acyl-pyrrolopiperidines and (R,R)-1,6-diacyl-pyrrolopiperidines.
EXAMPLES
The enantiomer excesses were determined by GC over cyclodextrin columns, and the configuration was determined by comparison with authentically synthesized pyrrolopiperidines.
Example 1
10 g of racemic cis-pyrrolopiperidine were dissolved in 250 ml of ethyl acetate, and 60 g of Novocym® 435 were added. The mixture was then stirred slowly for 14 days at 40° C. The enzyme was filtered off, and the filter cake was washed with ethyl acetate. The combined organic solutions were evaporated. The residue was dissolved in 100 ml of 10% strength by weight aqueous hydrochloric acid and extracted with 4×100 ml of chloroform. The organic phases were combined, dried and evaporated, giving 6.43 g of (S,S)-1,6-diacetyl-pyrrolopiperidine (38% of theory, purity greater than 95%, m.p. 58 to 60° C.). The aqueous phase was rendered alkaline (pH greater than 10) using 45% strength by weight aqueous sodium hydroxide solution and extracted with 4×100 ml of chloroform. The combined organic phases were dried using sodium sulphate and evaporated, giving 8.2 g of (R,R)-6-acetylpyrrolopiperidine with 96.5% by weight content (=62% of theory, m.p. 83.6 to 84.2° C.).
Example 2
1 g of (S,S)-1,6-diacetyl-pyrrolopiperidine was dissolved in 10 ml of concentrated aqueous hydrochloric acid and refluxed for 24 hours. The mixture was then rendered alkaline using aqueous sodium hydroxide solution and extracted with 3×20 ml of chloroform. The combined organic phases were dried over sodium sulphate and evaporated, giving 0.55 g of (S,S)-pyrrolopiperidine (=95% of theory). Racemization was not observed.
Example 3
1 g of (R,R)-6-acetyl-pyrrolopiperidine was dissolved in 10 ml of concentrated aqueous hydrochloric acid and refluxed for 24 hours. The mixture was then rendered alkaline using aqueous sodium hydroxide solution and extracted with 3×20 ml of chloroform. The combined organic phases were dried over sodium sulphate and evaporated, giving 0.7 g of (R,R)-pyrrolopiperidine (=93% of theory). Racemization was not observed.
Although the present invention has been described in detail with reference to certain preferred versions thereof, other variations are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained therein.

Claims (5)

What is claimed is:
1. Method for the racemate resolution of cis- and trans-pyrrolopiperidine, characterized in that a mixture, which comprises (R,R)- and (S,S)-pyrrolopiperidine or (S,R)- and (R,S)-pyrrolopiperidine, is enzymatically monoacylated to give a mixture (I) which comprises (R,R)- and (S,S)-6-acyl-pyrrolopiperidine or (S,R)- and (R,S)-6-acyl-pyrrolopiperidine, this mixture (I) is enzymatically further acylated to give a mixture (II) which comprises (S,S)-1,6-diacyl- and (R,R)-6-acyl-pyrrolipiperidine or (S,R)-1,6-diacyl- and (R,S)-6-acyl-pyrrolopiperidine, the enzyme and optionally solvent and excess acylating agent are separated off from the mixture (II), and the remainder is treated with aqueous acid, and (S,S)-1,6-diacyl-pyrrolopiperidine or (S,R)-1,6-diacyl-pyrrolopiperidine is separated off by extraction, and the extraction residue is rendered alkaline, and (R,R)-6-acyl-pyrrolopiperidine or (R,S)-6-acyl-pyrrolopiperidine is separated off by extraction.
2. Process according to claim 1, characterized in that the acylating agents used are those of the formula (I) ##STR3## in which R1 and R2 independently of one another are hydrogen or C1 -C12 -alkyl,
and the two acylating reactions are carried out as a one-pot reaction at from 10 to 90° C.
3. Process according to claim 1, wherein the enzyme used is a hydrolase in native or immobilized form.
4. Process according to claim 1, wherein the aqueous acid used is from 2 to 50% strength by weight sulphuric, hydrochloric, phosphoric or acetic acid, in an amount such that the pH following the addition of acid is 4 or less.
5. Process according to claim 1, wherein the extraction residue is rendered alkaline up to a pH of 7.5 or higher using alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogencarbonate, calcium hydroxide or ammonia.
US09/485,083 1997-08-14 1998-08-01 Method for racemic biochemical resolution of CIS-and trans-pyprolopiperidine Expired - Fee Related US6153414A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19735198A DE19735198A1 (en) 1997-08-14 1997-08-14 Optical resolution of cis- or trans-pyrrolo:piperidine derivatives
DE19735198 1997-08-14
PCT/EP1998/004820 WO1999009200A1 (en) 1997-08-14 1998-08-01 Method for racemic biochemical resolution of cis- and trans- pyrrolopiperidine

Publications (1)

Publication Number Publication Date
US6153414A true US6153414A (en) 2000-11-28

Family

ID=7838922

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/485,083 Expired - Fee Related US6153414A (en) 1997-08-14 1998-08-01 Method for racemic biochemical resolution of CIS-and trans-pyprolopiperidine

Country Status (11)

Country Link
US (1) US6153414A (en)
EP (1) EP1003902A1 (en)
JP (1) JP2001514901A (en)
KR (1) KR20010022843A (en)
CN (1) CN1267334A (en)
AU (1) AU9158098A (en)
CA (1) CA2300119A1 (en)
DE (1) DE19735198A1 (en)
HU (1) HUP0004660A3 (en)
IL (1) IL134169A0 (en)
WO (1) WO1999009200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221329A1 (en) * 2007-01-05 2008-09-11 Zheqing Wang Novel and economical process for preparing (S, S)-2, 8-diazabicyclo[4.3.0]nonane and its enantiomer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393337B1 (en) * 2009-03-06 2012-04-20 Italiana Sint Spa SUMMARY OF (4AS, 7AS) -OTTAIDRO-1H-PIRROLO [3,4-B] PYRIDINE
CN103044418B (en) * 2011-10-14 2015-02-04 上海朴颐化学科技有限公司 Asymmetric synthesis method, relevant raw materials and preparation method of (S,S)-2,8-diazabicyclo[4,3,0] nonane
CN104672234B (en) * 2015-02-14 2016-01-27 佛山市赛维斯医药科技有限公司 One class is containing FXa inhibitor, the preparation method and its usage of biamide structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550903A1 (en) * 1992-01-10 1993-07-14 Bayer Ag Quinolone- and naphthyridone carboxylic acid derivatives as antibacterial agents
DE4332738A1 (en) * 1993-09-25 1995-03-30 Basf Ag Racemate resolution of primary and secondary amines by enzyme-catalyzed acylation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0148277B1 (en) * 1993-01-18 1998-11-02 채영복 Novel fluoroquinolone derivatives and process for the preparation thereof
GB9321325D0 (en) * 1993-10-15 1993-12-08 Chiros Ltd Microorganism and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550903A1 (en) * 1992-01-10 1993-07-14 Bayer Ag Quinolone- and naphthyridone carboxylic acid derivatives as antibacterial agents
DE4332738A1 (en) * 1993-09-25 1995-03-30 Basf Ag Racemate resolution of primary and secondary amines by enzyme-catalyzed acylation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Advanced Organic Chemistry, 4th edition Reactions Mechanisms, and Structure Jerry March. *
Chimia 48, pp. 570 1994, Reetz et al, Highly Efficient Lipase Catalyzed Kinetic Resolution of Chiral Amines. *
Chimia 48, pp. 570 1994, Reetz et al, Highly Efficient Lipase-Catalyzed Kinetic Resolution of Chiral Amines.
Houben Weyl, Methoden der organischen Chemie, Methods in Organic Chemistry, 4th edition 1994, H. Henecka: Carbons a uren. *
Houben-Weyl, Methoden der organischen Chemie, Methods in Organic Chemistry, 4th edition 1994, H. Henecka: Carbonsauren.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221329A1 (en) * 2007-01-05 2008-09-11 Zheqing Wang Novel and economical process for preparing (S, S)-2, 8-diazabicyclo[4.3.0]nonane and its enantiomer
US7692015B2 (en) 2007-01-05 2010-04-06 Zheqing Wang Economical process for preparing (S, S)-2, 8-diazabicyclo[4.3.0]nonane and its enantiomer

Also Published As

Publication number Publication date
CA2300119A1 (en) 1999-02-25
KR20010022843A (en) 2001-03-26
EP1003902A1 (en) 2000-05-31
HUP0004660A2 (en) 2001-04-28
DE19735198A1 (en) 1999-02-18
CN1267334A (en) 2000-09-20
HUP0004660A3 (en) 2004-04-28
JP2001514901A (en) 2001-09-18
WO1999009200A1 (en) 1999-02-25
AU9158098A (en) 1999-03-08
IL134169A0 (en) 2001-04-30

Similar Documents

Publication Publication Date Title
US6613934B1 (en) Enantiomerically enriched malonic acid monoesters substituted by a tertiary hydrocarbon radical, and their preparation
KR100779864B1 (en) Method for enzymatic enantiomer-separation of 3R- and 3S-hydroxy-1-methyl-4-2,4,6-trimethoxyphenyl-1,2,3,6-tetrahydro-pyridine or its carboxylic acid esters
US6153414A (en) Method for racemic biochemical resolution of CIS-and trans-pyprolopiperidine
US5169779A (en) Process for the preparation of methyl (-)-(2R,3S)-2,3-epoxy-3-(4-methoxy-phenyl)propionate
EP0237983A2 (en) Process for the biotechnological preparation of L (-)-carnitine chloride
EP1587943A1 (en) Method for preparing a (r)- or (s)- form of n-(2,6-dimethyl phenyl) alanine and a counter enantiomeric form of n-(2,6-dimethyl phenyl) alanine ester thereto using enzyme
US5407828A (en) Process for stereoselection of (2R,3S)-3-phenylgycidic ester using lipase from candida antarctica
JP4843813B2 (en) Method for preparing R- or S-form α-substituted heterocyclic carboxylic acid and enantiomer of α-substituted heterocyclic carboxylic acid ester of the opposite mirror image using enzyme
US5534436A (en) Enzymatic resolution of asymmetric alcohols by means of vinyl esters of polybasic carboxylic acids
JP4225694B2 (en) Enzymatic kinetic resolution of 3-phenylglycidic esters by transesterification with amino alcohols
JP4843812B2 (en) Method for optical resolution of racemic α-substituted heterocyclic carboxylic acids using enzymes
KR100368735B1 (en) Method for preparing R- or S-form α-substituted heterocyclic carboxyl acid using enzyme
KR100395310B1 (en) Method for optically resolving preparing R- or S-form α-substituted heterocyclic carboxyl acid using enzyme
JP2005520552A (en) Process for producing optically active β-aminocarboxylic acid from racemic N-acylated β-aminocarboxylic acid
JP5329973B2 (en) From racemic 4- (1-aminoethyl) benzoic acid methyl ester to (R)-and (S) -4- (1-ammoniumethyl) by enantioselective acylation using a lipase catalyst followed by precipitation with sulfuric acid. Method for preparing benzoic acid methyl ester sulfate
EP0617130A2 (en) Method for the resolution of racemic mixtures
EP2264039A1 (en) Process for the preparation of fosinopril and intermediates thereof
EP0490407A2 (en) Process for the enzymatic separation of the optical isomers of tosyloxy-alkanols

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER AKTIENGELLSCAHFT KONZERNBEREICH RP, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DREISBACH, CLAUS;REEL/FRAME:010635/0574

Effective date: 20000112

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20041128